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Abstract—The increasing use of light emitting diodes (LED)
and light receptors such as photodiodes and cameras in vehicles
motivates the use of visible light communication (VLC) for
inter–vehicular networking. However, the mobility of the vehicles
presents a fundamental impediment for high throughput and link
sustenance in vehicular VLC. While prior work has explored
vehicular VLC system design, yet, there is no clear understanding
on the amount of motion of vehicles in real world vehicular VLC
use–case scenarios. To address this knowledge gap, in this paper,
we present a mobility characterization study through extensive
experiments in real world driving scenarios. We characterize
motion using a constantly illuminated transmitter on a lead
vehicle and a multi–camera setup on a following vehicle. The
observations from our experiments reveal key insights on the
degree of relative motion of a vehicle along its spatial axis and
different vehicular motion behaviors. The motion characteriza-
tion from this work lays a stepping stone to addressing mobility
in vehicular VLC.

I. INTRODUCTION

The extremely high bandwidth and directional nature of
visible light communication (VLC) presents numerous oppor-
tunities for high throughput communication with high spatial
reuse. These features make VLC an interesting case for
vehicular networking using brake lights and head lights as
transmitters, and optical/image sensing devices as receivers. In
particular, vehicular VLC can benefit from high throughput di-
rectional links between vehicles and infrastructure (e.g. down-
links and uplinks between vehicles and road side edge/cloud
computing units). The high spatial reuse factor can enable mul-
ticasting and multiple–input multiple–output (MIMO) com-
munication (e.g. a VLC network of platooning cars, visual
MIMO [1] for vehicles). However, VLC lags behind radio
frequency (RF) communication in terms of adoption as a
key vehicular networking technology. This is attributed to
the fact that VLC links are highly directional, making them
highly susceptible to throughput reduction and link failures
during mobility. Therefore, realizing vehicular VLC in practice
fundamentally requires addressing mobility.

Mobility is a fundamental challenge for VLC due to its line–
of–sight (LOS) requirement. VLC links require strict spatial
alignment between the transmitting and receiving optical ele-
ments. Such an alignment becomes extremely challenging with
traditional optical receivers that use photodiodes, due to the
very small cone of reception or field–of–view (FOV). The FOV
in a VLC system can be increased by using a lens in front of
the receiving elements, however, this makes the system noisy
due to the additional collection of ambient light noise at the

receiver. The noise can be spatially filtered, while maintaining
a large FOV, using camera inspired receivers due to the image
sensor’s pixelated spatial structure. Selective filtering of ambi-
ent noise can help increase the receiver signal–to–noise ratio
(SNR). The pixelated structure enables spatial resolvability
(filtering) of ambient noise and the large FOV provides a larger
angle of freedom for mobility for the transmitter–receiver pair.
This way, camera inspired receivers present unique advantages
to address the mobility issue. However, addressing the mobility
problem requires a clear understanding of the amount and
types of motion that the vehicular VLC system may encounter.

Prior works in vehicular VLC have largely been limited
to theoretical concepts or controlled experiments in primarily
static or controlled mobility settings. Only a few works in
recent times have explored VLC for vehicular communication
in realistic mobile settings. Shen et al [2] present their pilot
studies on using a photodiode receiver and a brakelight LED
transmitter for low data rate communication on real highway
driving settings. The study reveals the need for a better under-
standing of the instantaneous motion of vehicles on the road
to help locate the transmit beam and retain link alignment.
Yamazato et al [3], conduct a motion characterization study
under V2I and V2V scenarios using a LED array and a high–
resolution camera. However, the experiments were conducted
in a very controlled setting and did not capture the broad range
of realistic vehicular movement on roadways. Additionally, the
speed of the vehicle was limited to about 18-20 miles–per–
hour (mph), which limits the scope of mobility characterization
knowledge in context of vehicular networking.

To gain a better understanding of mobility in vehicular
VLC, in this paper, we present a holistic study of the motion
of the vehicles in real world driving settings. We take an
approach where we make extensive measurements, using a
VLC setup on real roadway driving, and derive our insights
based on the observations from analyzing the measurement
data sets. Our experiments involve a colored chesssboard
pattern marker fixed on a lead vehicle and two (identical)
cameras fixed on a following vehicle. We analyze the camera
images and estimate the amount of movement of the vehicles
in two spatial dimensions X and Y (see Fig. 1 (a)) in typical
driving conditions. In essence, this paper presents an empirical
study of motion in vehicular VLC by measuring the geometric
effects on camera images, due to the relative motion between
transmitter and receiver. We note that motion also leads to
photometric effects such as signal quality reduction, pixel
intensity reduction, motion blur etc., which we reserve for



(a) Vehicle coordinate axis (b) Transmitter setup (c) Receiver setup

Fig. 1: Vehicle coordinate axis convention and experiment setup involving the lead (transmitter) and follower (receiver) vehicle

future work.
While prior work has explored mobility in vehicular VLC,

to the best of our knowledge, our work presents the first ex-
tensive study of motion of vehicles in uncontrolled real–world
driving scenarios. The data set in our study is comprehensive
of about 15 hours of video footage at 30fps, which translates
to analysis of over 1.5 million images (sample points).

In summary, the key contributions of this paper are as
follows:

1) Definition of a motion model describing vehicle motion
in 2D, measurement of vehicle motion in 2D, and a study
of the relation between vehicular motion behavior (type
of motion) and degree of motion through the model.

2) An extensive real–world experimentation involving mul-
tiple hours of data collection in realistic vehicular driving
conditions.

II. MOTION MODEL AND EXPERIMENT SETUP

We map the mobility characterization problem to the esti-
mation of amount of motion of the vehicle in 3D space. In
a wireless communication context, it is the relative motion
between the transmitter and receiver that impacts the signal
quality. Hence, we focus on the problem of estimating the
relative motion between a transmitter vehicle and a receiver
vehicle. Estimating the relative motion translates to the prob-
lem of determining the relative positioning between the two
vehicles at any instance of time.

To this end, we characterize the motion of vehicles through
a motion model that describes the relative positioning between
two vehicles (transmitter and receiver) along three spatial
dimensions. We define motion model as a vector,

M = [δu δv δw n] (1)

where, δu captures the relative movement along horizontal
(X), δv captures the relative movement along vertical (Y), δw
captures the relative movement along the driving path (Z),
and n is a flag value representing the vehicle behavior class
type. Here, the motion model is described for a single time
snapshot. The relative movement values represent the motion
over a specific time window and the vehicular behavior class is
the type of motion the vehicle undergoes in that specific time
window. We will define and discuss the vehicle class types in
detail in Section III-C.

A. Challenges in vehicular positioning

Positioning requires precise location information in 3D.
Using global positioning system (GPS) coordinates of each
vehicle we can determine the distance between the vehicles
or the relative position of the vehicles along Z dimension.
However, there is no information on the other two (X and Y)
dimensions. Also, GPS is prone to errors in the typical range of
3–10 meters and upto 100 meters under poor signal reception
regions. Such a degree of error, can significantly detriment the
quality of a VLC link as the errors can lead to losing track of
the transmitter and/or communicating with the wrong vehicle;
for example, a typical lane on a highway is 4m in width and
a 3m error will almost imply a different vehicle in the next
lane.

Relative positioning between two vehicles on road is also
extremely challenging due to the random driving behavior
of the vehicles. This implies the receiver must be able to
predict and/or estimate the type of transmitter vehicle motion
behavior. One approach is to fit both vehicles with inertial
measurement unit (IMU) sensors that can record the amount
of local motion in each of 3D axis. Since the sensors are
positioned on each vehicle, the transmitter will require to
inform the receiver of the sensor value. Such a necessity
creates a chicken–egg type problem, as the prime reason
for exploring vehicular VLC is to establish communication
between the two vehicles. While using a control radio channel
to share the sensor data is a possibility, this does not scale well
in realistic driving conditions. Also, IMU sensors drift with
time, making them not a suitable choice for precise motion
measurement.

Due to the challenges in using GPS and motion sensors,
we choose to study motion in a vehicular VLC link using an
optical wireless setup. In particular, we indirectly measure the
amount of vehicle motion by studying the movements in the
image sensor pixelated domain.

B. General Experiment Setup

The measurement study involved conducting experiments by
driving two cars along different types of roads in the city of
Atlanta in Georgia, USA. During the experiments it was made
sure one car followed another car. Fig. 1 shows the experiment
setup along with the devices placements and axis conventions
used in our experimentation.

A color chessboard presenting a Bayer BGR pattern was
pasted on the back of the lead car. The chessboard is treated



Fig. 2: Driving roadmap of experiments conducted. The picture
shows the local road pathway (speeds 25–45mph). The parking
lot data (speeds 5-25mph) was collected on a 30m x 100m
parking lot in the location marked by the red pin on the map.

equivalent to a static–valued light transmitter. The car was
followed by the receiver car that stationed two GoPro 5 HERO
cameras. The two cameras were placed at a distance of 40cm
along the horizontal (X) and zero relative height difference.
The image view planes of the cameras were aligned parallel
to one another. The camera was set to operate at 1920 x 1080
pixel resolution and at 30 fps. Unless otherwise specified, these
are the default camera settings in our experiments.

The two vehicles were fit with an OBD–II diagnostic
monitoring device and an Android smartphone. The OBD–II
recorded the GPS coordinates (latitude and longitude) and car
speed. We paired the device with an Android tablet through
Bluetooth and used Torque Pro data logging application, avail-
able for download from Google Playstore. We stationed the
smartphone on the car’s dashboard and recorded the angular
rotation along 3 axis using an inertial measurement unit (IMU)
sensor logging application. We consider the rotation angles
along X, Y, Z axis as pitch, azimuth and roll, respectively.
The frequency of the measurements were set to 1 Hz (once
per second) on both devices.

The experiments involved driving the vehicles under differ-
ent road conditions and driving speeds (parking lot, local road
and highway). The roadmap of the experiment driving paths
is shown in Fig. 2. During the experiments the follower car
drove behind the lead car, maintaining a safe driving distance.
The follower car repeated the same action as the lead car.
For example, if the lead car changed the lane, the follower
car also changed the lane in the same direction. During this
process the cameras were set to record video footage while
the OBD and smartphones logged the corresponding sensor
values. Overall, we collected measurements worth of about
15 hours of video and over 50000 sensor data samples. We
analyze this measurement dataset to derive the motion model
by using tools from computer vision, probability and statistics

(a) Chessboard vertices (b) Sample motion computation

Fig. 3: Illustration of motion value computation using chess-
board vertices. We show an example computation of δu and
δv for one of the chessboard vertices.

and error analysis.
We follow a convention that, unless specified otherwise,

all relative motion parameters are defined using the receiver
(follower/camera) car as a reference. Therefore, every relative
computation between the two cars will use follower car value
minus lead car value. We assign positive (negative) polarity
to motion when the lead car is to the left (right) of the camera
center.

III. HORIZONTAL AND VERTICAL MOTION

Considering the use of a camera as our measuring unit at
the receiver, we denote the horizontal (X dimension: δu) and
vertical (Y dimension: δv) motion parameters in pixel units.
We consider, one pixel unit as the length corresponding to
the side of one square pixel in the camera image sensor,
set at the default resolution of 1920 x 1080. Given the
camera intrinsic parameters (focal length and side length of
a pixel and image sensor center), computed through camera
calibration procedures [4], the equivalent amount of motion in
world distance units (δworld

u , δworld
v ) can be computed using

perspective projection theory [5] as,

∆world = ∆pixels depth

( focal−length
pixel−side−length )

(2)

Here, depth is the distance between the object and camera
center. In our experiments, this translates to the distance
between the transmitter and receiver, equivalently the distance
between the two vehicles – denoted as δw. This means that
computation of the relative physical movement of the vehicles
in X and Y dimensions requires quantifying the movement
along Z dimension (estimating δw). From computer vision
theory, a minimum of two cameras (stereo vision) setup is
required to estimate depth – using stereo correspondence al-
gorithm [6]. Depth can also be estimated from a single camera
using structure from motion algorithms [6], however, that
requires knowing the exact type of movement of the camera,
which is technically an unknown parameter in our vehicular
setup experiments. The need for depth estimation motivates
the use of the two camera setup in our experimentation for
vehicle motion measurements. However, due to the lack of
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Fig. 4: Statistical representation of δu and δv in pixels at 1920 x 1080 camera resolution

(a) SW-R (b) SR (c) SW-L (d) ST

(e) LC (f) BM (g) LT (h) RT

Fig. 5: Image snapshots from our dataset that record each of the eight vehicle behavior types.
From top-left to bottom-right: sway right, straight, sway left, stop, lane change, bump,left turn, right turn.

a reliable ground–truth test bed for distance estimates (issue
with some of our sensors) we reserve the motion modeling in
Z (depth) for future work.

A. Measurements

We measure the horizontal and vertical motion using the
pixel coordinates of the corner vertices of the imaged chess-
board. Fig. 3 provides an illustration of this process. We run an
open–source chessboard detection routine [7] on each image
frame and record the pixel locations, (row, col), of 25 vertices
(corners). We collect 25 points to provide diversity and scale
the number of samples to improve the statistical estimation
accuracy. If (rowi(k), coli(k)) and (rowi(k+ τ), coli(k+ τ))
correspond to the pixel coordinates of a vertex i (i =1,2,3..25)
at time instance k and k + τ , we compute the motion values
as,

δu(i, τ) = coli(k+τ)−coli(k) δv(i, τ) = rowi(k+τ)−rowi(k)
(3)

Here τ is the time period between each data (image) sample.
Since we process every frame of the video, τ = 1

fps , where
fps is the frame rate of the video.

B. Observations and Insights

We compute δu and δv for the entire dataset using the
procedure described above, setting fps = 30. We also create
sub–datasets by downsampling the parent dataset at lower

FPS µ Median σ Abs-max (left, right)
10-δu 0.03 -0.02 3.09 -26.92,37.8
2-δu 0.04 -0.02 3.15 -25.49, 32.61
1-δu 0.06 -0.02 3.16 -19.09 , 32.61
10-δv 0.01 0.01 1.07 -9.72 , 9.28
2-δv 0 0 1.02 -7.98 , 8.5
1-δv -0.03 0.01 1.06 -7.98 , 6.32

TABLE I: Tabulation of the δu and δv histogram statistics.

frame rates of 1, 2 and 10fps. For 10fps we take the difference
in pixel coordinates for every 3rd value in the parent dataset,
and correspondingly every 15th for 2fps, and 30th for 1fps.

In Fig. 4 we plot the overall probability distribution of δu
and δv at 30fps frame rates. We also provide the statistical
mean (µ), median, standard deviation (σ) and the maximums
in each polarity. Table I summarizes the histogram statistics
for 10, 2 and 1 fps camera frame rate settings.

From the histograms in Fig. 4 we can observe that δu is
bounded within an absolute value of 40 pixels and δv within
12 pixels. These observations lead us to the following key
insights:
(1) δu and δv range is consistent: Considering the large
size of our data set, and that our measurements are across
typical road driving conditions and natural driving patterns,
we infer that the absolute values of δu and δv are of the range
of 40 and 12 pixels, respectively. We note that these values
are relative to the camera resolution of 1920 x 1080. However,
translating this number to a different resolution is simple as
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Fig. 6: Horizontal and vertical motion values for different vehicle behaviors: Swaying to right inside the lane (SW-R), Straight
(SR), Swaying to left inside the lane (SW-L), Stop(ST), Lane change (LC), Bumping/brake to stop (BM), Left turn (LT), Right
turn (RT).

the it is a direct linear mapping (twice resolution implies 2
times the value of δu and δv) We also note that the amount
of vertical movement is significantly less than the horizontal.
This agrees with our general intuition that the amount of lateral
movement of a vehicle would be significantly more than the
vertical. However, we do also note that the vertical movement
is non–zero as it must account for the vibrations of the vehicle
and also jerk movements of the vehicle due to road conditions
(e.g. pothole).

(2) Vehicle movement behavior impacts δu and δv: An-
alyzing the motion by sampling the movements at different
time windows reveals that the type of motion happening in
that window matters significantly. Based on the definition of
the motion parameters, the value we measure corresponds to
the aggregate of the motion within the sampled time window.
From our measurements, we observe that the maximum move-
ment is within 40 pixels, whether it is sampled at 30fps or
1fps. It would be wrong to generalize a theory that a longer
time window sampling is a mere addition of the δ values
in each sub–window. The cumulative effect over a window
would be the case only when the movement of the car is
continual across the accruing time windows. However, since
that is not the only case in typical driving scenarios, we infer
that that within any sampling time window the vehicle could
be continually moving across a dimension or go back and forth
(vehicle sways to left and adjusts back by swaying to the right
in next window) or have a combination of multiple movements
across dimensions (vehicle sways to left and turns right or
stops). Depending on the length of the sampling window, the
fine (intricate) movements may or may not be captured, and
that only the position of the vehicle at the start and end of the
window will only be registered. For example, if the vehicle
moved to left in X by 10 pixels in 500ms and moved to right in
X by 10pixels in next 500ms, and if the sampling rate is 1fps,
the δu would be 0. However, this does not necessarily mean
that the vehicle was relatively static. In this case, a frame rate
of atleast 2fps can register the two events which will reflect
as δu(k) = −10 and δu(k + τ) = +10, respectively.

C. Vehicle Movement Behavior Analysis

We define 8 vehicle movement behavior actions and bin
our data set based on the movement type through manual
inspection of the videos. Each action is defined as the relative
movement of the lead car with respect to the follower car.
We recall that the follower car follows the same action as the
lead car. As mentioned earlier, the left and right conventions
are in reference to the viewing direction of the camera on the
follower car. The actions (see Fig. 5) are defined as follows:

1) SW-R : vehicle sways to the right within the same lane.
2) SR : vehicle driving straight within the same lane.
3) SW-L : vehicle sways to the left within the same lane.
4) ST : vehicle is stopped within the same lane.
5) LC : vehicle is changing a lane (left or right).
6) BM : vehicle experiencing a bump and/or braking to stop.
7) LT : vehicle actively turning left.
8) RT : vehicle actively turning right.

In Fig. 6 we draw the boxplots for the measured δu and δv
at each of the 8 vehicle behavior types.

On δu we can observe that the variance of the motion values
within a particular class/type is different across the 8 classes.
We observe that behaviors involving turn type movements
(lane changes, active turning) have a higher variance than
driving along the lane. We verify our conventions of left and
right by observing that RT has a median positive value and
LT has a negative median value.

On δv , we observe that the medians and variances are fairly
uniform across the types. In general, vertical movements are
more of a function of the driving path topology (driving on a
hill versus flat land) than vehicle behavior.

Measuring the vertical movements across different road el-
evations requires further experimental investigation. However,
these measurements provide a significant baseline knowledge
of the range of motion along these dimensions. In addition, the
variability in δu for different behavior types motivates deeper
analysis of the temporal variance of the motion within specific
time windows. We believe in further analysis of the data set
can help define relevant temporal features which can be used
for executing a machine learning classifier to identify and/or



predict vehicle motion behaviors. We reserve such an analysis
for automatic vehicle behavior learning through motion for
future work.

IV. RELATED WORK

Vehicular VLC has been gaining increasing interest in
the research community in recent times. Several works [8],
[9], [10], [11], [12] have proposed techniques for improving
reliability in vehicular VLC through using redundancy from
LED arrays and/or using image sensors for receiver diversity.
[13] proposes the use of a imaging based control channel for
tracking the LED transmitter and assisting communication on a
narrow FOV photodiode receiver. Such works attest to the fact
that image sensors play a key role for tracking assistance and
signal quality enhancement in vehicular VLC systems. Prior
works on tracking LED transmitters in vehicular VLC systems
have largely focused on addressing the mobility problem for
niche use–cases. Such techniques have largely used a reactive
approach, where the motion has affected the quality of the
signal and the research aims to address the after–effects in
signal quality.

Our work aims to address motion proactively, by first
gaining a comprehensive understanding of the degree and
type of motion in vehicular VLC systems. We will use this
fundamental understanding to further develop efficient trans-
mission and reception protocols for vehicular VLC. To this
end, [14], [3] are works in recent times that have approached
to modeling motion in vehicular VLC. However, the works
have been largely limited to specific driving settings which
impedes the generalization of such studies/models.

There is significant prior literature on the use of multiple
cameras for depth estimation using stereo vision in vehicular
systems [15], [16], [17]. The techniques range from using
disparity images to sophisticated 3D euclidean point recon-
struction. We note that our work does not claim to innovate
on stereo vision algorithms. Our work presents a motivational
use–case for multi–camera setups in vehicular VLC systems,
and can piggyback on the advancements in stero vision depth
estimation techniques.

V. CONCLUSION

In this paper we presented an experimental study of ve-
hicular motion by studying the relative spatial motion using
cameras. Through our experiments we generated a data set
worth over 15 hours of video footage. Upon extensive analysis
of our data set we inferred that the typical range of inter–frame
horizontal and vertical motion of the vehicles is of the order of
40 pixels at 1920x1080 resolution at 30fps. This translates to
about 25cm of lateral and vertical movement per 30ms (about
0.75meters/sec in worst case) for a typical digital video camera
at 10m distance between transmitter and receiver vehicle.
We also defined 8 vehicular movement behavior classes and
studied the motion values for each class.
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